清华主页 EN
导航菜单

Grothendieck lines in 3d SQCD and Quantum K-theory of the Grassmannian

来源: 10-13

时间:2023-10-13 Fri 16:00-18:00

地点:A3-3-201 ZOOM: 388 528 9728(PW: BIMSA)

组织者:Hongfei Shu, Hao Zou, Rui-Dong Zhu

主讲人:Osama Khlaif University of Birmingham

Abstract

In this talk I will revisit the correspondence between 3d $\mathcal{N}=2$ SQCD and the quantum K-theory of the Grassmannian variety Gr$(N_c, n_f)$. 3d $N=2$ SQCD has gauge group $U(N_c)_{k,k+l N_c}$ and $n_f$ chiral matter multiplets in the fundamental representation of $U(N_c)$. By analysing the moduli space of 3d vacua, we will fix the values of the Chern-Simons (CS) levels $(k,l)$ that give us 3d GLSMs that flow to 3d NLSMs with target Gr$(N_c,n_f)$. Then, I will review the 3d A-model of these GLSMs and the relation between the correlation functions in this model and quantum K-theory ring of the Grassmannian. A standard basis of this ring is given by the Schubert classes. These are the classes of the structure sheaves of the Schubert subvarieties. I will show how one can construct line operators in the 3d GLSM that flow to these classes in the IR. This talk is based on [arXiv: 2301.10753, 2305.00534, 2309.06980] with C. Closset.

返回顶部
相关文章
  • Geometric logic in Grothendieck toposes

    Introduction to Topos TheoryTopos theory is a branch of mathematics, based on category theory, which has connections to both algebraic geometry and mathematical logic. Within mathematical logic it can be used to give alternative, more flexible foundations for all of mathematics, and in particular provides the foundation for subjects such as synthetic differential geometry. More recently, the wo...

  • 清华大学求真书院2023年全国优秀大学生冬令营通知

    清华大学数学学科有着辉煌而悠久的历史和良好的育人传统。2009年12月清华大学成立数学科学中心,邀请国际著名数学家、首位华裔菲尔兹奖获得者丘成桐先生担任中心主任。作为支持清华大学发展数学学科的重大战略举措,2014年底教育部批准依托清华大学成立丘成桐数学科学中心。在丘成桐先生的领导下,数学科学中心已经建立了一支由顶尖学术大师和中青年数学家组成的研究队伍。2021年初, 清华大学在人才培养体系中另辟特区,设立...