Abstract:
Drinfeld's lemma for l-adic local systems is a fundamental result in arithmetic geometry. It plays an important role in the Langlands correspondence for a reductive group over the function field of a curve over a finite field, pioneered by Drinfeld for GL_2 and subsequently extended by L. Lafforgue and then V. Lafforgue. In this talk, we will discuss Drinfeld's lemma for p-adic local systems: overconvergent/convergent F-isocrystals. This is based on a joint work with Kiran Kedlaya.