AbstractA general curve C of genus 6 can be embedded into the unique quintic del Pezzo surface X_5 as a divisor of class -2K_{X_5}. This embedding is unique up to the action of the symmetric group S_5. Taking a double cover of X_5 branched along C yields a K3 surface Y. Thus the K-moduli spaces of the pair (X_5, cC) can be studied via wall-crossing and by relating them to the Hassett-Keel progr...
AbstractThe study of moduli spaces of hyperKahler manifolds and low dimensional cubic hypersurfaces is an active direction in algebraic geometry. Thanks to kinds of Torelli theorem, many moduli spaces can be realized as locally symmetric varieties of unitary type or orthogonal type. Hodge theory, birational geometry and arithmetic geometry converge in this topic. In this talk I will give a gene...