清华主页 EN
导航菜单

Dowling-Wilson conjecture and equivariant compactification of the vector group

来源: 11-11

时间:Fri., 11:00 -12:00 am, Nov. 11

地点:Zoom: ID: 271 534 5558 ; PW: YMSC

主讲人:Prof. Botong Wang 王博潼

Abstract

In the first part of the talk, I will give a survey of the proof of the Dowling-Wilson conjecture using the Schubert variety of a hyperplane arrangement. The Schubert variety of a hyperplane arrangement is an equivariant compactification of the vector group with finitely many orbits. In the second part of the talk, we will discuss a recent work of Colin Crowley characterizing Schubert variety of hyperplane arrangements among all equivariant compactification of vector groups, and some on-going work on polymatroid Schubert varieties joint with Colin Crowley and Connor Simpson.


Speaker:

Botong Wang is an Associate Professor in the Department of Mathematics at the University of Wisconsin-Madison. He received his PhD from Purdue University in 2012 and BS from Beijing University in 2006. He was postdoctoral fellow at University of Notre Dame and KU Leuven before coming to University of Wisconsin-Madison. He has a broad interest in several different subjects in mathematics, including combinatorics, algebraic geometry and topology.Of notable achievements, Dr. Wang was in a joint paper with June Huh, where they used methods of algebraic geometry to solve conjecture of Dowling and Wilson in combinatorics that had been open since the 1970s.

返回顶部
相关文章
  • The plectic conjecture over local fields

    Abstract:The étale cohomology of varieties over Q enjoys a Galois action. For Hilbert modular varieties, Nekovář-Scholl observed that this Galois action on the level of cohomology extends to a much larger profinite group: the plectic group. Motivated by applications to higher-rank Euler systems, they conjectured that this extension holds even on the level of complexes, as well as for more gene...

  • Equivariant Log-concavity and Equivariant Kahler Packages (or: Shadows of Hodge Theory)

    Abstract: This talk aims to advertise a pattern/phenomenon that has emerged in many different mathematical areas during the past decades but is not currently well-understood. I will begin with a broad overview of the Kahler packages (Poincare duality, Hard Lefschetz, and Hodge-Riemann relations) that appear in geometry, algebra, and combinatorics, from the classics of Lefschetz to the recent wo...