Abstract:We discuss existence and inverse results for Schr\"odinger operators on the hyperbolic space $\mathbb{H}^{n+1}$, with smooth, compactly supported potentials. Such results have been known in the Euclidean setting for several decades, based on the wave/heat trace expansions as well as asymptotics of the scatteringphase. We will present a full picture of the corresponding theory in the h...
AbstractWith collaborators Jesse Gell-Redman and Sean Gomes, we have begun to set up an entirely new framework for tackling the linear and nonlinear Schrödinger equation. I will describe this setup and explain why I believe it is a more powerful framework than existing approaches for studying nonlinear scattering and soliton dynamics.SpeakerI am currently a Professor and Associate Director of R...