清华主页 EN
导航菜单

Machine Learning and Seismic Tomography

来源: 06-27

时间:Fri., 14:30-16:30 June 28, 2024

地点:Lecture Hall B725 Shuangqing Complex Building Online Zoom Meeting ID: 271 534 5558 Passcode: YMSC

主讲人:Xu Yang 杨旭 University of California, Santa Barbara

Speaker

Xu Yang got his Ph.D. at the University of Wisconsin-Madison in 2008, and spent two years at Princeton and two years at Courant Institute of NYU as a postdoc. He joined the University of California, Santa Barbara as an assistant professor in 2012, and became a full professor in 2020. His current research focuses on seismic imaging using realistic earthquake data. He has also been working on the applied analysis and numerical computation of scientific problems, including photonic graphene, ferromagnetic materials, and biological modeling.


Abstract

The stochastic gradient descent (SGD) method and deep neural networks (DNN) are two main workhorses in machine learning. In this talk, we present some preliminary results on connecting SGD and DNN to the applications in seismic tomography. On the one hand, motivated by SGD, we propose to use random batch methods to construct the gradient for iterations in seismic tomography. On the other hand, we use deep neural networks to create a reliable PmP database from massive seismic data and study the case in Southern California. The major difficulty lies in that the identifiable PmP waves are rare, making the problem of identifying the PmP waves from a massive seismic database inherently unbalanced.

返回顶部
相关文章
  • Bayesian machine learning

    Record: YesLevel: GraduateLanguage: EnglishPrerequisiteProbability theory, Mathematical statistics, Machine learningAbstractProbabilistic approach in machine and deep learning leads to principled solutions. It provides explainable decisions and new ways for improving of existing approaches. Bayesian machine learning consists of probabilistic approaches that rely on Bayes formula. It can help in...

  • Machine Learning for Theoretical Physics

    PrerequisiteElementary multivariate calculus, elementary statistics. Some basic General Relativity and Statistical Mechanics may help in following the applications.AbstractThe course is targeted to those who know beginning graduate level physics but do not know machine learning. We will cover important methods in machine learning with a view to their applications to current physics such as stri...