摘 要:
I will give a self-contained exposition of the theory of KZ equations and related topics. I want to focus on the geometry hidden behind solutions of KZ equations, e.g. local systems associated with KZ, the Gauss-Manin connections, monodromy representations of braid groups from KZ. I will also go to the algebra part such as Drinfeid-Kohno theorem which explains the relation between the monodromy representations and the one from quantum groups. I also hope to talk about the current developments.
预备知识:
representation theory of simple Lie algebra, basic knowledge of differential geometry and algebraic topology.
主讲人简介:
2009-2013 四川大学数学学院基础数学 本科
2013-2018 北京大学北京国际数学研究中心 博士
2018-2021 清华大学丘成桐数学科学中心 博士后
2021- 北京怀柔应用数学研究院 助理研究员
研究兴趣:1. 可积系统,特别是GW理论、LG理论中出现的无穷维可积系统,兴趣在于理解其中的无穷个对称性的代数结构和相关计算。2. 其他兴趣:mixed Hodge structure,quantum group and KZ equation, W-algebra and W-symmetry, augmentation representation
Note link:
【1】 【2】 【3】
Video link:
【1】(Passcode: 21Jj^^VW)
【2】(Passcode: 7m^@.mv#)
【3】(Passcode: $9pPvXv0)
【4】(Passcode: HF*@2@r0)
【5】(Passcode: UW.jZp$6)
【6】(Passcode: 1?sy728c)
【7】(Passcode: 6$apUwZK)
【8】(Passcode: p!FLxrJ0)
【9】(Passcode: 1!&itF=+)
【10】(Passcode: $g91t$@#)
【11】(Passcode: wE.!WHd7)