清华主页 EN
导航菜单

Knizhnik-Zamolodchikov方程

来源: 03-14

时间:09:50 - 12:15, every Monday, 3/14/2022 - 7/4/2022

地点:1129B&Zoom ID:638 227 8222,密码:BIMSA

组织者:唐鑫星

主讲人:唐鑫星

 要:

I will give a self-contained exposition of the theory of KZ equations and related topics. I want to focus on the geometry hidden behind solutions of KZ equations, e.g. local systems associated with KZ, the Gauss-Manin connections, monodromy representations of braid groups from KZ. I will also go to the algebra part such as Drinfeid-Kohno theorem which explains the relation between the monodromy representations and the one from quantum groups. I also hope to talk about the current developments.


预备知识:

representation theory of simple Lie algebra, basic knowledge of differential geometry and algebraic topology.


主讲人简介:

2009-2013 四川大学数学学院基础数学 本科

2013-2018 北京大学北京国际数学研究中心 博士

2018-2021 清华大学丘成桐数学科学中心 博士后

2021- 北京怀柔应用数学研究院 助理研究员

研究兴趣:1. 可积系统,特别是GW理论、LG理论中出现的无穷维可积系统,兴趣在于理解其中的无穷个对称性的代数结构和相关计算。2. 其他兴趣:mixed Hodge structurequantum group and KZ equation, W-algebra and W-symmetry, augmentation representation


Note link:

【1】 【2】 【3】

Video link:

【1】(Passcode: 21Jj^^VW)

【2】(Passcode: 7m^@.mv#)

【3】(Passcode: $9pPvXv0)

【4】(Passcode: HF*@2@r0)

【5】(Passcode: UW.jZp$6)

【6】(Passcode: 1?sy728c)

【7】(Passcode: 6$apUwZK)

【8】(Passcode: p!FLxrJ0)

【9】(Passcode: 1!&itF=+)

【10】(Passcode: $g91t$@#)

【11】(Passcode: wE.!WHd7)


返回顶部
相关文章
  • Spectral asymptotics for kinetic Brownian motion on Riemannian manifolds

    AbstractKinetic Brownian motion is a stochastic process that interpolates between the geodesic flow and Laplacian. It is also an analogue of Bismut’s hypoelliptic Laplacian. We prove the strong convergence of the spectrum of kinetic Brownian motion to the spectrum of base Laplacian for all compact Riemannian manifolds. This generalizes recent work of Kolb--Weich--Wolf on constant curvature sur...

  • Link homology and foams

    AbstractSome of the better-known link homology theories are bigraded and categorify Reshetikhin-Turaev GL(N) link invariants. In the past few years foams have emerged as an explicit way to construct link homology theories. We will explain what foams are and how evaluation of foams leads to these explicit approaches to link homology.Mikhail KhovanovColumbia UniversityMikhail Khovanov is a profes...