Description: This course introduces how to develop deep generative models (DGMs) by integrating probabilistic graphical models and deep learning to generate realistic data including images, texts, graphs, etc. Course contents include 1) basics of probabilistic graphical models, including Bayesian network and Markov random field; 2) posterior inference methods, including message passing, variat...
IntroductionThis two-semester course is structured with the initial semester dedicated to theoretical foundations, followed by the second semester emphasizing practical applications. In the first semester, the focus lies in the exploration of the emerging field of neuroaesthetics and its pertinence to enhancing scientific presentations. Participants will develop competencies in optimizing prese...