AbstractWe study some natural representations of current Lie algebras $g\otimes \Bbbk[t]$, called Weyl modules. They are natural analogues of irreducible representations of simple Lie algebras. There are several current analogues of classical theorems about Lie algebras where these modules «play role» of irreducible modules. In my talk I will explain analogues of duality theorems, namely Peter-...
AbstractA powerful technique in representation theory is localization, wherein one identifies categories of modules for an algebra of interest with categories of D-modules or perverse sheaves. After reviewing the classical Beilinson”ŖBernstein theorem, which introduced localization for semisimple Lie algebras, we will describe some analogues for certain vertex algebras, notably W-algebras and...