Abstract:Manifold learning theory has garnered considerable attention in the modeling of expansive biomedical datasets, showcasing its ability to capture data essence more effectively than traditional linear methodologies. Nevertheless, prevalent algorithms are primarily designed for low-dimensional and clean datasets, whereas contemporary biomedical datasets tend to be high-dimensional and no...
AbstractThe main challenge that sets transfer learning apart from traditional supervised learning is the distribution shift, reflected as the shift between the source and target models and that between the marginal covariate distributions. High-dimensional data introduces unique challenges, such as covariate shifts in the covariate correlation structure and model shifts across individual featur...