清华主页 EN
导航菜单

On Fusion Categories III

来源: 09-09

时间:15:20 - 16:55, Mon,Tue, 9/13/2022 - 12/12/2022

地点:Venue: 1120 Zoom: 518 868 7656 PW: BIMSA

主讲人:Sebastien Palcoux (Assistant Research Fellow)

Record: Yes

Level: Undergraduate

Language: English


Prerequisite

Category theory


Abstract

This is the sequel of the course "On Fusion Categories II" given last semester.It introduces to the notion fusion category, which can be seen as a representation theory of the (finite) quantum symmetries. The notes and videos of the first and second parts are available at: Part I: http://www.bimsa.cn/newsinfo/526244.html Part II: https://www.bimsa.cn/newsinfo/601271.html


Reference

1. Etingof, Pavel; Nikshych, Dmitri; Ostrik, Viktor. On fusion categories. Ann. of Math. (2) 162 (2005), no. 2, 581--642.Etingof, Pavel; Gelaki, Shlomo;

2. Nikshych, Dmitri; Ostrik, Victor. Tensor categories. Mathematical Surveys andMonographs, 205 (2015), xvi+343 pp. http://www-math.mit.edu/~etingof/egnobookfinal.pdf


Syllabus

1. (Chapter 7) Module categories

2. (Chapter 8) Braided categories

3. (Chapter 9) Fusion categories


Lecturer Intro

2010年于 Institut de Mathématiques de Marseille (I2M)取得数学博士学位

2014-2016 Institute of Mathematical Sciences (IMSc)任博士后

2020-至今于北京雁栖湖应用数学研究院任助理研究员

主要研究兴趣:量子代数,量子对称,子因子平面代数和融合范畴。在Advances in Mathematics, Quantum Topology等多个杂志上发表学术论文。


Lecturer Email: sebastienpalcoux@bimsa.cn

TA: Dr. Tinhinane Amina Azzouz, azzouzta@bimsa.cn


返回顶部
相关文章
  • On Fusion Categories IV

    PrerequisiteIt should be helpful to be a bit familiar with the general category theory, the finite group theory and the representation theory, but it is not necessary to follow the course.AbstractThis is the sequel of the course "On Fusion Categories III" given last semester. It introduces to the notion fusion category, which can be seen as a representation theory of the (finite) quantum symmet...

  • [BIMSA-Tsinghua Quantum Symmetry Seminar] On the minimal extension and classification of some braided fusion categories

    摘要: In this talk, we show that any slightly degenerate weakly group-theoretical fusion category admits a minimal extension, and we will also give structure theorems of some braided fusion categories with particular Frobenius-Perron dimensions.This is a joint work with Victor Ostrik