ICBS Lecture 国际基础科学大会报告
首届国际基础科学大会(International Congress of Basic Science,简称 ICBS)将于2023年7月16日-28日在北京举行,主题为“聚焦基础科学,引领人类未来”。大会期间,约350场前沿科学奖报告(Frontiers of Science Award Lecture)、大会报告(Plenary Lecture)以及特邀报告(Invited Lecture)将在北京雁栖湖应用数学研究院举行。
多位国际学术大奖得主领衔主讲大会报告
2018年菲尔兹奖得主、
清华大学教授
Caucher Birkar
2022年邵逸夫奖得主、
2005年哥德尔奖得主、
美国普林斯顿大学
和以色列特拉维夫大学教授
Noga Alon
2022年菲尔兹奖得主、
法国高等科学研究所教授、
瑞士日内瓦大学教授
Hugo Duminil-Copin
1998年沃尔夫奖得主、
英国布里斯托大学教授
Michael Berry
2018年数学突破奖得主、
美国犹他大学教授
Christopher Hacon
2021年科学突破奖--数学新视野奖得主、
日内瓦大学全职教授
Aleksandr Logunov
6场报告
7月18日-7月21日
Venue: Math Lecture Room 9 (A6 1F)
7月18日(星期二)上午 8:00-9:00
考切尔·比尔卡尔 Caucher Birkar
2018年菲尔兹奖得主、
欧洲科学院院士、
英国皇家科学院院士、
清华大学教授
Title
Classification of algebraic varieties
Abstract
In this talk I will outline the framework of the classification theory of algebraic varieties and explain some of the recent advances in the field.
Venue: TCIS Lecture Room 12 (A7 3F)
7月19日(星期三)上午 08:00-09:00
诺加·阿隆 Noga Alon
2022年邵逸夫奖得主、
2005年哥德尔奖得主、
以色列科学与人文学院院士、
美国普林斯顿大学和以色列特拉维夫大学教授
Title
DM & TCS
Abstract
The tight connections between Discrete Mathematics and Theoretical Computer Science have been fruitful in the development of both areas in the recent decades. I will describe several examples illustrating this fact.
Venue: Physics Lecture Room 4 (A3-2 1F)
7月19日(星期三)下午 15:15-16:15
雨果·杜米尼尔·科平 Hugo Duminil-Copin
2022年菲尔兹奖得主、
法国高等科学研究所教授、
瑞士日内瓦大学教授
Title
Marginal triviality of the 4D Ising model
Abstract
In this talk, we discuss the fact that the scaling limit of spin fluctuations in four-dimensional Ising-type models with nearest-neighbor ferromagnetic interaction at or near the critical point is Gaussian and its implications from the point of view of Euclidean Field Theory. Similar statements will be proven for the λφ⁴ fields over R⁴ with a lattice ultraviolet cutoff, in the limit of infinite volume and vanishing lattice spacing. The proofs are enabled by the models' random current representation, in which the correlation functions' deviation from Wick's law is expressed in terms of intersection probabilities of random currents with sources at distances which are large on the model's lattice scale. Guided by the analogy with random walk intersection amplitudes, the analysis focuses on the improvement of the so-called tree diagram bound by a logarithmic correction term, which is derived here through multi-scale analysis.
Venue:Physics Lecture Room 4 (A3-2 1F)
7月20日(星期四)上午 09:15-10:15
迈克尔·贝里 Michael Berry
1998年沃尔夫奖得主、
英国皇家科学院院士、
美国国家科学院外籍院士、
英国布里斯托大学教授
Title
Geometric phases: old and new
Abstract
The waves that describe systems in quantum physics can carry information about how their environment has been altered, for example by forces acting on them. This effect is the geometric phase. It occurs in the optics of polarised light, where it goes back to the 1830s, possibly earlier. It influences wave interference; and it provides insight into the spin-statistics relation for identical quantum particles. The underlying mathematics is geometric: parallel transport, explaining how falling cats turn upright, and how to park a car. Recent results describe the typical behaviour of the geometric phase curvature and the related quantum metric. Incorporating the back-reaction of the geometric phase on the dynamics of the changing environment exposes an unsolved problem: how can a system be separated from its slowly-varying environment? The concept has a tangled history.
Venue: Math Lecture Room 9 (A6 1F)
7月21日(星期五)上午 10:30-11:30
克里斯托弗·哈孔 Christopher Hacon
2018 年数学突破奖得主、
美国国家科学院院士、
美国艺术与科学院院士、
英国皇家科学院院士、
美国犹他大学教授
Title
The geometry of polynomial equations
Abstract
Algebraic varieties are geometric objects defined by polynomial equations. In this lecture we will discuss progresses towards understanding their features in arbitrary dimension.
Venue: Math Lecture Room 7 (A3-4 1F)
7月21日(星期五)下午 16:15-17:00
亚历山大·洛古诺夫 Aleksandr Logunov
2021年科学突破奖--数学新视野奖得主、
2020年欧洲数学学会EMS奖得主、
日内瓦大学全职教授
Title
Zeroes of harmonic functions and growth
Abstract
Nadirashvili’s conjecture states that a non-constant harmonic function in the three-dimensional Euclidean space has a zero set of infinite area. The recent proof (2018) of Nadirashvili’s conjecture implied the lower bound in Yau’s conjecture for zero sets of Laplace eigenfunctions. We will discuss an open folklore conjecture relating the growth of harmonic functions and the area of their zero sets and its applications.