研究领域
量子模拟算法,量子科学计算,量子机器学习
刘锦鹏的主要研究领域为量子模拟算法,量子科学计算,量子机器学习等。他开创性地发展了一系列量子算法用于求解微分方程、
采样与优化问题,并解决了量子计算领域15年的公开猜想:提出首个多项式时间求解非线性微分方程的量子算法。
他在PNAS、Nat. Commun.、PRL、CMP、JCP、Quantum 等期刊和 NeurIPS、QIP、TQC等会议发表论文多篇,并受到 Quanta、
SIAM News、MATH+ 等科技媒体报道。刘锦鹏现为量子信息领域顶刊Quantum的编委,是中国高校现有的3名编委之一。
教育背景
2013-2017 学士 北京航空航天大学-中科院华罗庚班
2017-2022 博士 马里兰大学
科研经历
2024 至今 助理教授,清华大学丘成桐数学科学中心
2023-2024 博士后研究员,麻省理工学院
2022-2023 西蒙斯量子博士后,加州大学伯克利分校
荣誉与奖励
2024年 世界华人数学家大会ICCM毕业论文奖(博士论文金奖)
2023-2024年 NSF Robust Quantum Simulation Seed Grant(Co-PI)
2023年 James C. Alexander Prize
2023年 MIT CTP Postdoctoral Scholarship
2022年 Simons Quantum Postdoctoral Fellowship
2022年 Stanford Q-FARM Bloch Fellowship
2021年 NSF QISE-NET Triplet Award
代表性论文
(Google Scholar https://scholar.google.com/citations?user=4dExDoAAAAAJ&hl=en)
[1] Provably Efficient Adiabatic Learning for Quantum-Classical Dynamics (with C.Peng, G-W.Chern, and D.Luo) arXiv:2408.00276
[2] Explicit block encodings of boundary value problems for many-body elliptic operators (with T.Kharazi, A.M.Alkadri, K.K.Mandadapu, and K.B.Whaley) arXiv:2407.18347
[3] Dense outputs from quantum simulations (with L.Lin) Journal of Computational Physics 113213 (2024)
[4] Towards provably efficient quantum algorithms for large-scale machine-learning
models (with J.Liu, M.Liu, Z.Ye, Y.Alexeev, J.Eisert, and L.Jiang) Nature Communications 15, 434 (2024).
[5] Linear combination of Hamiltonian simulation for non-unitary dynamics with optimal state preparation cost (with D.An and L.Lin) Physical Review Letters 131, 150603 (2023)
[6] A theory of quantum differential equation solvers: limitations and fast-forwarding (with D.An, D.Wang, and Q.Zhao) arXiv:2211.05246
[7] Quantum algorithms for sampling log-concave distributions and estimating normalizing constants (with A.M.Childs, T.Li, C.Wang, and R.Zhang) Advances in Neural Information Processing Systems 35, 23205–23217 (NeurIPS 2022)
[8] Efficient quantum algorithm for nonlinear reaction-diffusion equations and energy estimation (with D.An, D.Fang, S.Jordan, G.Low, and J.Wang) Communications in Mathematical Physics 404, 963-1020 (2023)
[9] Quantum simulation of real-space dynamics (A.M.Childs, J.Leng, T.Li,, C.Zhang) Quantum 6, 860 (2022)
[10] Quantum-accelerated multilevel Monte Carlo methods for stochastic differential equations in mathematical finance (with D.An, N.Linden, A.Montanaro, C.Shao, and J.Wang) Quantum 5, 481 (2021)
[11] Efficient quantum algorithm for dissipative nonlinear differential equations (with H. Ø.Holden, H.K.Krovi, N.F.Loureiro, K.Trivisa, and A.M.Childs) Proceedings of the National Academy of Sciences 118, 35 (2021)
[12] Solving generalized eigenvalue problems by ordinary differential equations on a quantum computer (with C.Shao) Proceedings of the Royal Society A 478, 20210797 (2022)
[13] High-precision quantum algorithms for partial differential equations (with A.M.Childs and A.Ostrander) Quantum 5, 574 (2021)
[14] Quantum spectral methods for differential equations (with A.M.Childs) Communications in Mathematical Physics 375, 1427-1457 (2020)
[15] New stepsizes for the gradient method (with C.Sun) Optimization Letters 14, 1943-1955 (2020)