清华主页 EN
导航菜单
研究生导师
Robert McRae

助理教授

单位:清华大学丘成桐数学科学中心

办公地点:宁斋S03

电子邮箱:rhmcrae@tsinghua.edu.cn

研究领域

顶点算子代数, 张量范畴, 数学物理

教育背景

2019至今 助理教授 清华大学丘成桐数学科学中心

2016-2019 助理教授 范德比尔特大学

2014-2016 博士后 北京大学

发表论文

1. On rationality for C_2-cofinite vertex operator algebras, arXiv:2108.01898.

2. A general mirror equivalence theorem for coset vertex operator algebras, arXiv:2107.06577.

3. On semisimplicity of module categories for finite non-zero index vertex operator subalgebras, arXiv:2103.07657.

4. (with J. Yang) Structure of Virasoro tensor categories at central charge 13-6p-6/p for integers p>1, arXiv:2011.02170.

5. (with T. Creutzig and J. Yang) Tensor structure on the Kazhdan-Lusztig category for affine gl(1|1), International Mathematics Research Notices 2021, rnab080, DOI: 10.1093/imrn/rnab080.

6. (with T. Creutzig and J. Yang) Direct limit completions of vertex tensor categories, Communications in Contemporary Mathematics (2021), 2150033, DOI: 10.1142/S0219199721500334.

7. (with T. Creutzig and J. Yang) On ribbon categories for singlet vertex algebras, Communications in Mathematical Physics 387 (2021), no. 2, 865-925.

8. Twisted modules and G-equivariantization in logarithmic conformal field theory, Communications in Mathematical Physics 383 (2021), no. 3, 1939-2019.

9. Vertex algebraic intertwining operators among generalized Verma modules for affine Lie algebras, Advances in Mathematics 374 (2020), 107351, 23 pp.

10. On the tensor structure of modules for compact orbifold vertex operator algebras, Mathematische Zeitschrift 296 (2020), no. 1-2, 409-452.

11. (with T. Creutzig and S. Kanade) Gluing vertex algebras, arXiv:1906.00119.

12. (with J. Yang) Vertex algebraic intertwining operators among generalized Verma modules for sl(2,C)^, Transactions of the American Mathematical Society 370 (2018), no. 4, 2351-2390.

13. (with T. Creutzig and S. Kanade) Tensor categories for vertex operator superalgebra extensions, to appear in Memoirs of the American Mathematical Society, arXiv:1705.05017.

14. (with B. Coulson, S. Kanade, J. Lepowsky, F. Qi, M. C. Russell, and C. Sadowski) A motivated proof of the Gollnitz-Gordon-Andrews identities, The Ramanujan Journal 42 (2017), no. 1, 97-129.

15. Non-negative integral level affine Lie algebra tensor categories and their associativity isomorphisms, Communications in Mathematical Physics 346 (2016), no. 1, 349-395.

16. Integral forms for tensor powers of the Virasoro vertex operator algebra L(1/2,0) and their modules, Journal of Algebra 431 (2015), 1-23.

17. Intertwining operators among modules for lattice and affine Lie algebra vertex operator algebras which respect integral forms, Journal of Pure and Applied Algebra 219 (2015), no. 10, 4757-4781.

18. On integral forms for vertex algebras associated with affine Lie algebras and lattices, Journal of Pure and Applied Algebra 219 (2015), no. 4, 1236-1257.

19. Linear automorphisms of vertex operator algebras associated with formal changes of variable and Bernoulli-type numbers, arXiv:1401.6442.

20. (with L. Carbone, S. Chung, L. Cobbs, D. Nandi, Y. Naqvi, and D. Penta) Classification of hyperbolic Dynkin diagrams, root lengths and Weyl group orbits, Journal of Physics A: Mathematical and Theoretical 43 (2010), no. 15, 155209, 30 pp.

上一篇:魏朝晖

下一篇:王晴睿