清华主页 EN
导航菜单
研究生导师
Caucher Birkar

教授

单位:清华大学丘成桐数学科学中心

办公地点:静斋315

电子邮箱:birkar@mail.tsinghua.edu.cn          

个人主页

研究领域

双有理几何

教育背景

2001-2004 博士 诺丁汉大学

工作经历

英国剑桥大学 教授

清华大学丘成桐数学科学中心 教授

荣誉与奖励

2019年 英国皇家学会会员

2018年 菲尔兹奖得主

2010年 菲利普·莱弗休姆奖

2010年 Prize of the Fondation Sciences Mathématiques de Paris

发表论文

(1) C. Birkar, Boundedness and volume of generalised pairs. arXiv:2103.14935v2.

(2) C. Birkar, G. Di Cerbo, R. Svaldi; Boundedness of elliptic Calabi-Yau varieties with a rational section.

arXiv:2010.09769v1.

(3) C. Birkar, On connectedness of non-klt loci of singularities of pairs. arXiv:2010.08226v1.

(4) C. Birkar, Y. Chen, Singularities on toric fibrations. arXiv:2010.07651v1.

(5) C. Birkar, K. Loginov, Bounding non-rationality of divisors on 3-fold Fano fibrations. arXiv:2007.15754v1.

(6) C. Birkar, Generalised pairs in birational geometry. arXiv:2008.01008v2.

(7) C. Birkar, Geometry and moduli of polarised varieties.. arXiv:2006.11238v1 (2020).

(8) C. Birkar, Log Calabi-Yau fibrations. arXiv:1811.10709v2.

(9) C. Birkar, Singularities of linear systems and boundedness of Fano varieties. Ann. of Math, 193, No. 2

(2021), 347–405.

(10) C. Birkar; Anti-pluricanonical systems on Fano varieties, Ann. of Math. 190, No. 2 (2019), 345–463.

(11) C. Birkar, Y. Chen, L. Zhang, Iitaka’s Cn,m conjecture for 3-folds over finite fields. Nagoya Math. J., (2016), 1-31.

(12) C. Birkar, J. Waldron; Existence of Mori fibre spaces for 3-folds in char p. Adv. in Math. 313 (2017), 62-101.

(13) C. Birkar, D.-Q. Zhang; Effectivity of Iitaka fibrations and pluricanonical systems of polarized pairs. Pub. Math. IHES

123 (2016), 283-331.

(14) C. Birkar; The augmented base locus of real divisors over arbitrary fields. Math Ann. 368 (2017), no. 3-4, 905-921.

(15) C. Birkar, J.A. Chen; Varieties fibred over abelian varieties with fibres of log general type. Adv. in Math. 270 (2015),

206-222.

(16) C. Birkar; Existence of flips and minimal models for 3-folds in char p. Annales Scientifiques de l’ENS,

49 (2016), 169-212.

(17) C. Birkar; Singularities on the base of a Fano type fibration. J. Reine Angew Math., 715 (2016), 125-142.

(18) C. Birkar, Y. Chen; Images of manifolds with semi-ample anti-canonical divisor. J. Alg. Geom., 25 (2016), 273-287.

(19) C. Birkar, Z. Hu; Log canonical pairs with good augmented base loci. Compos. Math, 150, 04, (2014), 579-592.

(20) C. Birkar, Z. Hu; Polarized pairs, log minimal models, and Zariski decompositions. Nagoya Math. J.

Volume 215 (2014), 203-224.

(21) C. Birkar; Existence of log canonical flips and a special LMMP. Pub. Math. IHES. Volume 115 (2012), 1, 325-368.

(22) C. Birkar; On existence of log minimal models and weak Zariski decompositions. Math Ann., Volume

354 (2012), Number 2, 787-799.

(23) C. Birkar; On existence of log minimal models II. J. Reine Angew Math. 658 (2011), 99-113.

(24) C. Birkar; The Iitaka conjecture C n,m in dimension six. Compos. Math. 145 (2009), 1442-1446.

(25) C. Birkar; On existence of log minimal models. Compos. Math. 146 (2010), 919-928.

(26) C. Birkar; P. Cascini; C. Hacon; J. M c Kernan; Existence of minimal models for varieties of log general

type. J. Amer. Math. Soc. 23 (2010), 405-468.

(27) C. Birkar; V.V. Shokurov; Mld’s vs thresholds and flips. J. Reine Angew. Math. 638 (2010), 209-234.

(28) C. Birkar; Ascending chain condition for log canonical thresholds and termination of log flips. Duke

Math. Journal, volume 136, no 1, (2007), 173-180.×××

上一篇:单芃

下一篇:邱宇