AbstractThe Deligne conjecture, many times a theorem, states that for a dg category C, the dg endomorphisms End(Id_C) of the identity functor-- that is, the Hochschild cochains-- carries a natural structure of 2-algebra. When C is endowed with a Calabi-Yau structure, then Hochschild cochains and Hochschild chains are identified up to a shift, and we may transport the circle action from Hochschi...
AbstractThe second Chern class $c_2$ plays a special role in studying Calabi-Yau threefolds. Among other things, we discuss about KSC (Kawaguchi-Silverman's Conjecture) and the finiteness problem of real forms of Calabi-Yau threefolds with $c_2$-contractions. Though nothing appears in the title and main statements, our arguments use dynamical degrees due to Dinh-Sibony and current work on slow ...