AbstractWe introduce an quantum entropy for bimodule quantum channels on finite von Neumann algebras, generalizing the remarkable Pimsner-Popa entropy. The relative entropy for Fourier multipliers of bimodule quantum channels establishes an upper bound of the quantum entropy. Additionally, we present the Araki relative entropy for bimodule quantum channels, revealing its equivalence to the rela...
AbstractThis talk will explain factorization homology, which is intended to abstract and organize the observables of a TQFT. Factorization homology is a construction that associates a chain complex to a (framed) n-manifold M and a (rigid) n-category C. One can rightfully think of C as the domain of a topological QFT, and C as an organization of point/line/surface/… observables of the QFT as th...