AbstractCounting embedded curves on a hyperbolic surface as a function of their length has been much studied by Mirzakhani and others. I will discuss analogous questions about counting incompressible surfaces in a hyperbolic 3-manifold, with the key difference that now the surfaces themselves have more intrinsic topology. As there are only finitely many incompressible surfaces of bounded Euler ...
AbstractBuilding on work of Oh-Thomas, I will introduce invariants for counting surfaces on Calabi-Yau fourfolds. In a family, they are deformation invariant along Hodge loci. If non-zero, the variational Hodge conjecture for the family under consideration holds. Time permitting, I will discuss different compactifications of the moduli spaces of surfaces involved, and some (conjectural) relatio...