Academics

Foundations and applications of numerical infinities and infinitesimals

Time:Fri., 16:00-17:00, Mar.7, 2025

Venue:C548, Shuangqing Complex Building A

Speaker:Yaroslav D. Sergeyev

Speaker:

Yaroslav D. Sergeyev

University of Calabria

Time:

Fri., 16:00-17:00, Mar.7, 2025

Venue:

C548, Shuangqing Complex Building A

Online:

Zoom Meeting ID: 271 534 5558

Passcode: YMSC

Title:

Foundations and applications of numerical infinities and infinitesimals

Abstract:

In this talk, a recent computational methodology (not related to non-standard analysis) is described (see [3, 5-7]). It allows people to work on a computer with infinities and infinitesimals numerically (i.e., not symbolically) in a unique framework and in all the situations requiring these notions. Recall that traditional approaches work with infinities and infinitesimals only symbolically and different notions are used in different situations related to infinity (∞, ordinals, cardinals, etc). The new methodology is based on the Euclid’s Common Notion “The whole is greater than the part” applied to all quantities (finite, infinite, and infinitesimal) and to all sets and processes (finite and infinite).

One of the strong advantages of this methodology consists of its usefulness in practical applications (see [1, 2, 7, 9]) that use a new kind of supercomputer called the Infinity Computer patented in several countries. It works numerically with numbers that can have several infinite and infinitesimal parts written in a positional system with an infinite base (called Grossone) using floating-point representation. On a number of examples (paradoxes [5-8], optimization [9], ODEs [1], hybrid systems [2], Turing machines [10], teaching [4,5], etc.), it is shown that the new approach can be useful both in practice in theoretical considerations. In particular, thanks to the new methodology, the accuracy of computations increases drastically, and all kinds of indeterminate forms and divergences are avoided.

It is argued that traditional numeral systems involved in computations limit our capabilities to compute and lead to ambiguities in certain theoretical assertions, as well. The Continuum Hypothesis and some results related to the Riemann zeta function are discussed from the point of view of the grossone methodology. It is also shown that this methodology allows to avoid several classical paradoxes related to infinity and infinitesimals.

The Infinity Calculator working with infinities and infinitesimals numerically is shown during the talk. For more information see https://www.theinfinitycomputer.com and https://www.numericalinfinities.com

DATEMarch 6, 2025
SHARE
Related News
    • 0

      Taming Infinities & Introduction to Regularity Structures

      Yip LectureOrganizer:Qiuzhen CollegeSpeaker:Martin Hairer2014 Fields Medalist;Professor of Mathematics at École Polytechnique Fédérale de Lausanne (EPFL);Professor of Mathematics at Imperial College LondonLecture 1: Taming InfinitiesTime: 15:30-17:00, March 27, 2025Venue: West Lecture Hall, Tsinghua UniversityLecture 2: Introduction to Regularity StructuresTime: 13:30-15:00, March 28, 2025V...

    • 1

      Efficient Numerical Methods for Solving Nonlinear Filtering Problems in Medium-high Dimensions

      Abstract:This talk introduces two efficient numerical methods for solving nonlinear filtering (NLF) problems. We propose the utilization of the proper orthogonal decomposition (POD) method and tensor train decomposition method to solve the forward Kolmogorov equation (FKE) associated with NLF problems. Our approach involves offline and online stages. In the offline stage, we discretize the par...