摘要In this talk, we discuss the periodic homogenization of linear elliptic equations of the form $-A(x/\varepsilon):D^2 u^{\varepsilon} = f$ subject to a Dirichlet boundary condition. We characterize good diffusion matrices $A$, i.e., those for which the sequence of solutions converges at a rate of $\mathcal{O}(\varepsilon^2)$ in the $L^{\infty}$-norm to the solution of the homogenized prob...
摘 要:This talk is devoted to studying homogenization error for non-stationary Stokes equations on perforated domains, which originally developed by J.-L. Lions. We now present a sharp error estimate in the sense of energy norms, where the main challenge is to control the boundary layers caused by the incompressibility condition. To obtain the optimal error, we first introduce some refined reg...