摘 要:Homogenization is a general phenomenon when physical processes in periodic or random environments exhibit homogeneous long time dynamics due to large space averaging of the variations in the environment. While this area of Mathematics saw a slew of remarkable developments in the last 20 years, the progress in the case of reaction-diffusion equations, which model many important physical ...
摘要In this talk, we discuss the periodic homogenization of linear elliptic equations of the form $-A(x/\varepsilon):D^2 u^{\varepsilon} = f$ subject to a Dirichlet boundary condition. We characterize good diffusion matrices $A$, i.e., those for which the sequence of solutions converges at a rate of $\mathcal{O}(\varepsilon^2)$ in the $L^{\infty}$-norm to the solution of the homogenized prob...