AbstractQuiver representation emerges from Lie theory and mathematical physics. Its simplicity and beautiful theory have attracted a lot of mathematicians and physicists. In this talk, I will explain localizations of a quiver algebra, and the relations with SYZ and noncommutative mirror symmetry. I will also explore the applications of quivers to computational models in machine learning.Speaker...
Abstract The resolutions of Slodowy slices $\widetilde{\mathcal{S}}_e$ are symplectic varieties that contain the Springer fiber $(G/B)_e$ as a Lagrangian subvariety.In joint work with R. Bezrukavnikov, M. McBreen and Z. Yun, we construct analogues of these spaces for homogeneous affine Springer fibers. We further understand the categories of microlocal sheaves in these symplectic spaces support...