Abstract:A hyperplane arrangement in C^n is the manifold obtained by removing a collection of affine complex dimension one hyperplanes from C^n. Despite the simplicity of the definition and the long history of studying them, even basic questions on their fundamental groups still remain open. One important scenario of studying, is that the collection of hyperplanes has extra symmetry - namely t...
AbstractThe scalar curvature of a Riemannian metric is interesting not only in analysis, geometry, and topology, but also in physics. Enlargeable Length-structures will be introduced and showed that it is a new obstruction to the existence of a Riemannian metric with positive scalar curvature (PSC-metric). Thus, the connected sum of a closed manifold with some of locally CAT(0)-manifolds carry ...