Organizer:
Chenglong Bao 包承龙 (YMSC)
Speakers:
Sihong Shao 邵嗣烘(PKU)
Mingtao Xia(NYU)
Time:
Thur., 9:30-11:30 am, May 29, 2025
Venue:
B626, Shuangqing Complex Building A
Discription:
报告人1:邵嗣烘
题目:从平方和到模之和:理论与算法
摘要:现代社会建立于数据之上,数据驱动着世界的发展。数据是离散的,连接这些离散数据的数学模型往往天然具有NP难的特征,例如复杂的组合优化问题,这迫使我们越来越重视离散数学工具的发展。另一方面,相较于离散的研究对象,连续的数学模型往往会呈现更多的结构信息,如凸性、对称性等,进而为产生更丰富的处理手段提高可能。于是一个合理的想法是将离散的基于数据的组合优化问题“嵌入”到连续问题来进行理论和算法的发展。沿着这条思路,传统的连续嵌入尝试往往遵循松弛-凑整的研究路径去讨论收敛性和估计近似比,但这样的分析极不平凡,多需要配合精心设计的凑整策略。即便如此,松弛和凑整这两个模块互相独立导致这种嵌入方式下重构的可行解依旧不够准确。为此,本报告将从多种NP难的图割问题出发来说说如何尝试构建一套离散到连续的准确嵌入方式,进而发展等价的非线性图谱理论和简单连续迭代算法,并通过启发式算法的高质量参考解来进行验证。
报告人2:Mingtao Xia
题目:A Wasserstein-distance method for reconstructing stochastic differential equations from time-series data with application in uncovering noisy gene regulatory dynamics
摘要:In the talk, I shall introduce our recent work on developing machine-learning-based methods for quantifying intrinsic noise with applications in reconstructing noisy gene regulatory dynamics. I will then discuss how to apply my methods to reconstruct stochastic processes in cellular dynamics such as the Langevin dynamics and Replication Protein A-DNA binding processes.