清华主页 EN
导航菜单

Metric asymptotics on the irregular Hitchin moduli space

来源: 05-08

时间:Monday, 10:00-11:30am May 8, 2023

地点:Jingzhai 304

主讲人:陈杲 中国科学技术大学特任教授

Abstract

In 1987, Hitchin constructed a complete hyperkähler metric on the moduli space of Higgs bundles, which can be generalized to accommodate singularities. In this talk, we consider Higgs bundles with irregular singularities over the Riemann sphere. We construct a generic ray in the moduli space and study the asymptotic behavior of the Hitchin metric along this ray. Using the techniques developed by Biquard-Boalch and Fredrickson-Mazzeo-Swoboda-Weiss, we show that the Hitchin metric is exponentially close to a simpler semi-flat metric. In dimension four, we obtain an explicit asymptotic formula for the semi-flat metric, which is of type ALG or ALG*.


Speaker

2008年入读中国科大少年班,2012年赴纽约州立大学石溪分校,师从陈秀雄教授攻读博士。2017年博士毕业后历任普林斯顿高等研究院博士后,威斯康星大学麦迪逊分校助理教授。2021年加盟中国科学技术大学,任几何与物理研究中心特任教授。

2015年,陈杲和几何与物理研究中心创始主任陈秀雄教授合作,完成了1977年霍金提出的“引力瞬子”的分类。2021年,他在稳定性的前提下,证明了陈秀雄和唐纳森独立提出的J方程以及丘成桐等提出的超临界厄米特-杨振宁-米尔斯型方程解的存在性。2021年获达摩院青橙奖,成为历届最年轻的获奖者。2022年获世界华人数学家大会ICCM数学奖银奖。

返回顶部
相关文章
  • Moduli Spaces and Related Topics | Hitchin morphism for projective varieties

    Abstract:The Hitchin morphism is a map from the moduli space of Higgs bundles to the Hitchin base, which is generally not surjective when the dimension of the variety is greater than one. Chen-Ngo introduced the concept of the spectral base, which is a closed subscheme of the Hitchin base. They conjectured that the Hitchin morphism is surjective to the spectral base and also proved that the su...

  • The spectral base of Hitchin maps | GRASP seminar

    AbstractLet X be a projective manifold. The Hitchin morphism is a map from the moduli stack of Higgsbundles over X to the Hitchin base, which sends a Higgs bundle to its characteristic polynomial. lfX is a curve, it is well-known that the Hitchin morphism is surjective and it plays an important rolein the study of the moduli space of Higgs bundles. However, if X has dimension at least two, theH...