清华主页 EN
导航菜单

Motivic Cohomology

来源: 03-16

时间:08:50 - 10:35, every Wednesday,Friday, 3/16/2022 - 6/8/2022

地点:1110&Zoom ID:638 227 8222,密码:BIMSA

组织者:杨南君

主讲人:杨南君

 要:

Motivic cohomology, originated from Deligne, Beilinson and Lichtenbaum and developed by Voevodsky, is a kind of cohomology theory on schemes. It admits comparison with étale cohomology of powers of roots of unity (Beilinson-Lichtenbaum), together with higher Chow groups, and relates to K-theory by Atiyah-Hirzebruch spectral sequence. In this lecture, we establish the category of motives in which the motivic cohomologies are realized. We explain its relationship with Milnor K-theory and Chow group. Furthermore, we introduce devices like MV-sequence, Gysin triangle, projective bundle formula and duality.


预备知识:

Basic algebraic geometry (GTM 52, Chapter 1-3)


参考书目:

C. Mazza, V. Voevodsky, C. Weibel, Lecture Notes on Motivic Cohomology, American Mathematical Society, Providence, RI, for the Clay Mathematics Institute, Cambridge, MA (2006).


主讲人简介:

本人本科毕业于北京航空航天大学,硕士博士毕业于格勒诺布尔-阿尔卑斯大学,博士导师Jean Fasel。之后在丘成桐数学科学中心做博后,现在是BIMSA的助理研究员。本人研究方向为原相(motivic)上同调和周-威特(Chow-Witt)环。本人提出了分裂型米尔诺-威特原相理论并且应用在纤维丛的周-威特环的计算中。相关成果已经独立发表在Manus. Math.Doc. Math.等期刊上。


Note link:

【1】 【2】 【3】 【4】 【5】 【6】 【7】 【8】 【9】 【10】 【11】 【12】 【13】 【14】 【15】 【16】【17】 【18】 【19】 【20】 【21】 【22】 【23】

Video link:

【1】(Passcode: 508!pfJL)

【2】(Passcode: W.p?p3@j)

【3】(Passcode: O0A#NuE$)

【4】(Passcode: A0Js.uaU)

【5】(Passcode: X9kFtwx@)

【6】(Passcode: 0Feiyif%)

【7】(Passcode: L02GL=1?)

【8】(Passcode: Y#B0^Sf4)

【9】(Passcode: 6sYf!kFe)

【10】(Passcode: 0Fi#5*@L)

【11】(Passcode: 6V!Nz75c)

【12】(Passcode: @7!*J?Ut)

【13】(Passcode: F#^%6@%6)

【14】(Passcode: r0Yi2gw$)

【15】(Passcode: QnrL47*a)

【16】(Passcode: ^1ZRdrgf)

【17】(Passcode: EMLFm17+)

【18】(Passcode: @j0m*.9k)

【19】(Passcode: aDQ@5p!w)

【20】(Passcode: 44@.7EbH)

【21】(Passcode: 2&b33u7u)

【22】(Passcode: %8L5DhtY)


返回顶部
相关文章
  • Motivic cohomology of cyclic coverings | BIMSA-YMSC AG Seminar

    AbstractMany examples of topologically contractible smooth affine complex varieties are given by cyclic coverings. In this talk, we explain some new results on the motivic cohomology of such cyclic coverings

  • Cohomology of Arithmetic Groups

    PrerequisiteBasic algebraic topology and number theoryAbstractI will talk about the basics of cohomology of arithmetic groups focusing on Harder's new book. I will start from simplest cases of the group SL_2 over Z (which covers the chapter 2 and 3 of the book of Harder) and try to be as concrete as possible. The goal is to under these cohomology groups from the point of view of geometry and ar...