清华主页 EN
导航菜单

表示论

来源: 11-17

PI: 邱宇


团队致力于表示论的研究, 研究兴趣包括三角范畴、箭图表示、簇群理论、李理论等。在强调该理论的代数方面的同时, 我们还探索了它与几何、拓扑和数学物理的联系, 例如稳定性条件、映射类群、镜像对称性和弦论。


返回顶部
相关文章
  • 几何表示论讨论班:隆德大学 Gustavo Jasso主讲

    The DonovaThe Donovan-Wemyss Conjecture via the Derived Auslander-Iyama CorrespondenceAbstractThe Donovan-Wemyss Conjecture predicts that the isomorphism type of an isolated compound Du Val singularity R that admits a crepant resolution is completely determined by the derived-equivalence class of any of its contraction algebras. Crucial results of August and Hua-Keller reduced the conjecture to...

  • 几何表示论讨论班:波士顿大学Siu-Cheong Lau主讲

    AbstractQuiver representation emerges from Lie theory and mathematical physics. Its simplicity and beautiful theory have attracted a lot of mathematicians and physicists. In this talk, I will explain localizations of a quiver algebra, and the relations with SYZ and noncommutative mirror symmetry. I will also explore the applications of quivers to computational models in machine learning.Speaker...